The QI-Digital initiative is creating completely new perspectives for the safety management and quality assurance of technical systems. | |
Our research in the context of a hydrogen refuelling station shows how digital innovations and processes can overcome the challenges of efficient and reliable quality assurance for complex systems. |
Typical challenges in quality assurance today
Conventional inspection and maintenance procedures for technical systems often require considerable effort and lead to operational interruptions. The precise recording of the system status and the reliable documentation of the sensor calibration are extremely demanding and can often hardly be realised in real time. Frequently, only asynchronous, often analogue, extensive and confusing collections of quality and safety-relevant documentation and evidence are available.
Optimisation with the help of a digital quality infrastructure
The introduction of digital QI tools can optimise quality assurance processes for technical systems. This increases reliability, safety, resource efficiency and cost-effectiveness in operation. Using the example of a hydrogen refuelling station, we are developing, testing and demonstrating solutions for modern quality assurance in our real-world laboratory at BAM. In doing so, we rely on innovative approaches for new monitoring and testing methods, state-of-the-art sensor technologies and advanced digital models. The development of fundamental tools for a digital quality infrastructure that offer sustainable added value is particularly important to us. Our aim is to implement these modern tools - including machine-readable standards, digital test reports and certificates as well as data infrastructure (Quality-X) - in a practical manner and test them under real-world conditions. In this way, we ensure that our developments are not only convincing in theory, but also prove their added value in practical application.
| |
The "Living Lab Hydrogen Refuelling Station" is embedded in the Competence Centre H2Safety@BAM for hydrogen of the Bundesanstalt für Materialforschung und -prüfung. |
- Optimisation of maintenance cycles and minimisation of downtimes
- Increasing operational reliability through early identification of critical conditions in the overall system
- Development of reliable quality and safety standards
- Digitally supported risk assessment and conformity evaluation
| |
Our main goal in this pilot project is to create solutions that can be transferred to other hydrogen applications and to technical systems in general. We are contributing the knowledge gained to the further development of standards and technical regulations - a contribution to technology transfer and the promotion of innovation. |
The pilot project "Reliable hydrogen filling station" addresses the digitalisation of QI at the following levels:
The core tasks of the sub-project include the planning, procurement, construction, and operation of the hydrogen refuelling station test platform. The supply (1) of the test platform with hydrogen is carried out via an electrolyser, which is fed with green electricity from photovoltaics or wind turbines and, if necessary, supplemented by deliveries of green hydrogen. The actual filling station (2) consists of a compressor, buffer storage, gas cooler, and dispenser for delivering the hydrogen to a vehicle. Cars and light commercial vehicles with hydrogen fuel cells are used as recipients (3). The operating data generated during a refuelling process is collected, processed, and supplemented by external metadata and made available for the generation of models and digital twins.
This sub-project deals with the integration of the process control technology of the experimental platform as well as further sensors on a hardware platform installed on-site. Current concepts of the process industry (e.g., NAMUR Open Architecture) are used for this purpose. The data obtained will be digitally stored together with models (digital twin) so that they can be used to generate further information, update the models, and reparametrize the hardware. The sub-project is the link between the hardware of the experimental platform and the trustworthy provision of data at the interface to the QI-Cloud.
The overall goal of the sub-project is to optimise and validate the digital hydrogen refuelling station management with sensor technologies. For this purpose, sensor networks are to be intelligently designed with digitally supported evaluation strategies to comprehensively and efficiently monitor the physical and chemical parameters at and in plants and to reliably detect malfunctions. Concrete work steps are the application of sensor technology (gas sensors, manometers, and thermometers) and their digital integration into the refuelling station management system as well as validation in real operation. The measurement results obtained as well as the measurement uncertainties, histories, and procedures are processed in digital form, stored, and continuously included in the AI-based data evaluation. The use of digital calibration certificates (DCC) is being tested and serves the metrological traceability of the measured quantities in a digital QI.
We find "legal" measurements everywhere in everyday life: electricity or water meters in the household, the scales at the butcher's, or the speed camera notice from the police. The legislator has issued directives as well as laws and regulations to comply with defined protection goals (consumer protection, traffic safety, ...). In the case of explosion protection, the protection goal is always safety through the prevention of explosions.
In the pilot project "Reliable hydrogen refuelling stations", the information on the conformity assessment certificates in legal metrology and explosion protection is to be transferred into a digital, machine-readable format as an example. The focus here is on the European Directives on Measuring Instruments (MID, 2014/32/EU), Explosive Atmospheres (ATEX, 2014/34/EU), and Non-Automatic Weighing Instruments (NAWID, 2014/31/EU) and the German counterparts: the Measurement and Verification Act, the Measurement and Verification Ordinance as well as the Production Safety Act and the Industrial Safety Ordinance. Digitalisation is intended to make the processes involved more efficient and secure and to improve data availability and comprehensibility. Ultimately, the entire quality infrastructure is to be strengthened.
The essential high-pressure storage tanks for the hydrogen test platform on the BAM site have arrived. Following the successful delivery of the cooling system and three medium-pressure storage tanks with 68 cylinders each, the test platform is taking shape thanks to the new components. The total of 204 red cylinders can store over 250 kg of hydrogen at a pressure of 200 bar. In addition, the white high-pressure cylinders can hold a further 60 kg of hydrogen at over 1000 bar for rapid refuelling. This means: a big step towards a digital quality infrastructure of the future!